Journal of Physical Chemistry C | 2019

Calculation of the Infrared Intensity of Crystalline Systems. A Comparison of Three Strategies Based on Berry Phase, Wannier Function, and Coupled-Perturbed Kohn–Sham Methods

 
 
 
 
 
 

Abstract


Three alternative strategies for the calculation of the IR intensity of crystalline systems, as determined by Born charges, have been implemented in the Crystal code, using a Gaussian type basis set. One uses the Berry phase (BP) algorithm to compute the dipole moment; another does so, instead, through well localized crystalline orbitals (Wannier functions, WF); and the third is based on a coupled perturbed Hartree–Fock or Kohn–Sham procedure (CP). In WF and BP, the derivative of the dipole moment with respect to the atomic coordinates is evaluated numerically, whereas in CP it is analytical. In the three cases, very different numerical schemes are utilized, so that the equivalence of the obtained IR intensities is not ensured a priori but instead is the result of the high numerical accuracy of the many computational steps involved. The main aspects of the three schemes are briefly recalled, and the dependence of the results on the computational parameters (number of k points in reciprocal space, toleranc...

Volume 123
Pages 8336-8346
DOI 10.1021/ACS.JPCC.8B08902
Language English
Journal Journal of Physical Chemistry C

Full Text