ACS applied materials & interfaces | 2021

Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination.

 
 
 

Abstract


Herein, we demonstrate the desalination performance of a solar-driven membrane distillation (MD) process, where upon light illumination, a highly localized heating of plasmonic titanium nitride nanoparticles (TiN NPs) immobilized on a hydrophobic membrane provides the thermal driving force for the MD operation. The engineered TiN photothermal membrane induces vapor generation directly at the feed-membrane interface upon solar irradiation, thereby eliminating the need to heat the entire bulk feed water. The results indicate that the average vapor flux through the TiN photothermal membrane without any auxiliary feed heating was recorded as 1.01 L m-2 h-1, which corresponds to the solar-thermal efficiency of 66.7% under 1 sun solar irradiance. The superior performance of the photothermal MD process is attributed to the broadband optical absorption and excellent light-to-heat conversion properties of the plasmonic TiN NP layer, which enabled efficient interfacial water heating at the membrane surface and increased the net driving force for vapor transport. Results also reveal the high mechanical stability of the TiN photothermal coating layer during long-term photothermal MD operations. We believe that the TiN photothermal membranes fabricated using a relatively inexpensive and nontoxic material via the simple technique with high stability and photothermal conversion efficiency will provide a path forward for developing the solar-driven MD applications.

Volume None
Pages None
DOI 10.1021/acsami.0c17154
Language English
Journal ACS applied materials & interfaces

Full Text