ACS applied materials & interfaces | 2021

In Vivo Blood-Repellent Performance of a Controllable Facile-Generated Superhydrophobic Surface.

 
 
 
 
 
 
 
 
 

Abstract


Fabrication of a blood-repellent surface is essential for implantable or interventional medical devices to avoid thrombosis which can induce several serious complications. In this research, a novel micropatterned surface was fabricated via a facile and cost-effective method, and then, the in vitro and in vivo blood-repellent performances of the controllable superhydrophobic surface were systematically evaluated. First, a facile and cost-effective strategy was proposed to fabricate a controllable superhydrophobic surface on a medically pure titanium substrate using an ultraviolet laser process, ultrasonic acid treatment, and chemical modification. Second, the superhydrophobicity, durability, stability, and corrosion resistance of the superhydrophobic surface were confirmed with advanced testing techniques, which display a high contact angle, low adhesion to water and blood, and excellent resistant element precipitation. Third, the platelet-rich plasma and whole blood were applied to evaluate the hemocompatibility of the superhydrophobic surface by means of an in vitro experiment, and no blood cell activation or aggregation was observed on the superhydrophobic surface. Finally, hollow tubes with an inner superhydrophobic surface were implanted into the left carotid artery of rabbits for 2 weeks to verify the biocompatibility in vivo. The superhydrophobic surface could effectively eliminate blood cell adhesion and thrombosis. No obvious inflammation or inordinate proliferation was found by histological analysis. This research provides a facile and cost-effective strategy to prepare a blood-repellent surface, which may have promising applications in implanted biomedical devices.

Volume None
Pages None
DOI 10.1021/acsami.0c21058
Language English
Journal ACS applied materials & interfaces

Full Text