ACS applied materials & interfaces | 2021

Color-Tunable Aqueous Room-Temperature Phosphorescence Supramolecular Assembly.

 
 
 
 
 

Abstract


Developing room-temperature phosphorescence (RTP) materials with color-tunability performance in an aqueous environment is crucial for application in optoelectronic areas to a higher stage, such as multicolor display, visual detection of external stimulus, and high-level information anticounterfeiting, but still faces a formidable challenge. Herein, we propose an efficient design strategy to develop excitation wavelength-responsive RTP supramolecular co-assembly systems of a simple benzoic acid derivative and Laponite (Lap) clay nanoplates in aqueous solution, displaying an ultralong lifetime (0.632 s) and a high phosphorescence quantum efficiency (18.04%) simultaneously. Experimental and theoretical research studies suggest that this distinctive feature is due to the generation of more and efficient intersystem crossing pathways benefiting from the coexistence of isolated and J-aggregation states via controlling the doping of the benzoic acid derivative and the inhibition of phosphorescence quenching by water because of the synergistic effects of robust hydrogen-bonding interactions between Lap and the benzoic acid derivative, J-aggregations of the benzoic acid derivative, and good oxygen tolerance of the Lap clay. By virtue of their excellent RTP performances in aqueous solution, the visual colorimetric detection of Ag+ in a water environment was achieved for the first time, and visible and high-level information encryption was accomplished as well.

Volume None
Pages None
DOI 10.1021/acsami.1c01174
Language English
Journal ACS applied materials & interfaces

Full Text