ACS applied materials & interfaces | 2021

Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification.

 
 
 
 
 
 
 
 

Abstract


Fabric-based triboelectric nanogenerators (TENGs) are promising candidates as wearable energy-harvesting devices and self-powered sensors. Booting the power generation performance is an eternal pursuit for TENGs. Herein, an efficient approach was proposed to enhance the triboelectric performance of commercial velvet fabric by enriching the fiber surface with hierarchical structures and amide bonds through chemical grafting of carbon nanotube (CNT) and poly(ethylenimine) (PEI) via a polyamidation reaction. With an optimized modifier concentration, the fabric-based TENG easily achieved over 10 times improvement in output voltage and current at a low modifier content of less than 1 wt %. The modified-fabric-based TENG was fully washable and exhibited excellent robustness and long-term stability. With a maximum power density of 3.2 W/m2 achieved on a 5 × 106 Ω external resistor, the TENG was able to serve as a power source for various small electronics such as pedometer, digital watch, calculator, and digital timer. In addition, the TENG demonstrated capability in self-powered tactile and pressure sensing and promising potential in human-computer interface applications. The approach proposed provides a feasible path for boosting the triboelectric performance of fabric-based TENGs and gives insights into the design of fabric-based nanogenerators and smart textiles.

Volume None
Pages None
DOI 10.1021/acsami.1c02815
Language English
Journal ACS applied materials & interfaces

Full Text