ACS applied materials & interfaces | 2021

Compatibility between Activity and Selectivity in Catalytic Oxidation of Benzyl Alcohol with Au-Pd Nanoparticles through Redox Switching of SnOx.

 
 
 
 
 
 
 
 
 
 

Abstract


A balance between catalytic activity and product selectivity remains a dilemma for the partial oxidation processes because the products are prone to be overoxidized. In this work, we report on the partial oxidation of benzyl alcohol using a modified catalyst consisting of nanosized Au-Pd particles (NPs) with tin oxide (SnOx) deposited on a mesoporous silica support. We found that the SnOx promotes the autogenous reduction of PdO to active Pd0 species on the Au-Pd NP catalyst (SnOx@AP-ox) before H2 reduction, which is due to the high oxophilicity of Sn. The presence of active Pd0 species and the enhancement of oxygen transfer by SnOx led to high catalytic activity. The benzaldehyde selectivity was enhanced with the increase of SnOx content on catalyst SnOx@AP-ox, which is ascribed to the modulated affinity of reactants and products on the catalyst surface through the redox switching of Sn species. After H2 reduction, SnOx was partially reduced and Au-Pd-Sn alloy was formed. The formation of Au-Pd-Sn alloy weakened both the catalytic synergy of Au-Pd alloy NPs and the adsorption of benzyl alcohol on the reduced catalyst, thus leading to low catalytic activity.

Volume None
Pages None
DOI 10.1021/acsami.1c10207
Language English
Journal ACS applied materials & interfaces

Full Text