ACS applied materials & interfaces | 2021

Targeted Mitochondrial Fluorescence Imaging-Guided Tumor Antimetabolic Therapy with the Imprinted Polymer Nanomedicine Capable of Specifically Recognizing Dihydrofolate Reductase.

 
 
 
 
 
 

Abstract


As we all know, inhibiting the activity of dihydrofolate reductase (DHFR) has always been an effective strategy for folate antimetabolites to treat tumors. In the past, it mainly relied on chemical drugs. Here, we propose a new strategy, (3-propanecarboxyl)triphenylphosphonium bromide (CTPB)-modified molecularly imprinted polymer nanomedicine (MIP-CTPB). MIP-CTPB prepared by imprinting the active center of DHFR can specifically bind to the active center to block the catalytic activity of DHFR, thereby inhibiting the synthesis of DNA and ultimately inhibiting the tumor growth. The modification of CTPB allows the nanomedicine to be targeted and enriched in mitochondria, where DHFR is abundant. The confocal laser imaging results show that MIP-CTPB can target mitochondria. Cytotoxicity experiments show that MIP-CTPB inhibits HeLa cell proliferation by 42.2%. In vivo experiments show that the tumor volume of the MIP-CTPB-treated group is only one-sixth of that of the untreated group. The fluorescent and paramagnetic properties of the nanomedicine enable targeted fluorescence imaging of mitochondria and T2-weighted magnetic resonance imaging of tumors. This research not only opens up a new direction for the application of molecular imprinting, but also provides a new idea for tumor antimetabolic therapy guided by targeted mitochondrial imaging.

Volume None
Pages None
DOI 10.1021/acsami.1c11388
Language English
Journal ACS applied materials & interfaces

Full Text