ACS applied materials & interfaces | 2021

Unraveling the Role of Neutral Units for Single-Ion Conducting Polymer Electrolytes.

 
 
 
 
 
 
 
 

Abstract


With the cationic transference number close to unity, single-ion conducting polymer electrolytes (SICPEs) are recognized as an advanced electrolyte system with improved energy efficiency for battery application. The relatively low ionic conductivity for most of the SICPEs in comparison with liquid electrolytes remains the major bottleneck for their practical applications. Polyethylene oxide (PEO) has been recognized as a benchmark for solid polymer electrolytes due to its high salt solubility and reasonable ionic conductivity. PEO has two advantages: (i) the polar ether groups coordinate well with lithium ions (Li+) providing good dissociation from anions, and (ii) the low Tg provides fast segmental dynamics at ambient temperature and assists rapid charge transport. These properties lead to active use of PEO as neutral plasticizing units in SICPEs. Herein, we present a detailed comparison of new SICPEs copolymerized with PEO units vs SICPEs copolymerized with other types of neutral units possessing either flexible or polar structures. The presented analysis revealed that the polarity of side chains has a limited influence on ion dissociation for copolymer-type SICPEs. The Li+-ion dissociation seems to be controlled by the charge delocalization on the polymerized anion. With good miscibility between plasticizing neutral units and ionic conductive units, the ambient ionic conductivity of synthesized SICPEs is still mainly controlled by the Tg of the copolymer. This work sheds light on the dominating role of PEO in SICPE systems and provides helpful guidance for designing polymer electrolytes with new functionalities and structures. Furthermore, based on the presented results, we propose that designing polyanions with a highly delocalized charge may be another promising route for achieving sufficient lithium ionic conductivity in solvent-free SICPEs.

Volume None
Pages None
DOI 10.1021/acsami.1c15641
Language English
Journal ACS applied materials & interfaces

Full Text