ACS applied materials & interfaces | 2019

Multiple Transfer of Layer-by-Layer Nanofunctional Films by Adhesion Controls.

 
 
 
 
 
 
 

Abstract


Transfer methods to displace active functional layers onto desired surfaces have been developed for the fabrication of nanostructured thin film devices. However, multiple transfers with highly polar surfaces were not yet fully demonstrated presumably due to difficulty in the control of the competitive adhesions at interfaces. In this study, we present adhesion-assisted multiple transfer methods for the fabrication of highly ordered nanolaminated structures with layer-by-layer (LbL) assembled films composed of various functional nanomaterials. The interfacial adhesions were controlled with adhesive layers having thicknesses of only 2.5 nm for the successful transfer of the LbL nanofunctional films from the donor substrates to the receiver substrates, which was determined mainly by the major functional moieties at the contact surfaces. The root-mean-square roughness should be lower than 200 nm for conformal contact in the transfer. The versatility of the proposed method was demonstrated with various functional Au, silica, ZnO, and TiO2 nanoparticles as constituent materials and various types of substrates including Si wafer, glass, and polyethylene terephthalate surfaces. The fabricated films with periodic depositions of two different materials could exhibit photoreflective properties with high-order reflection peaks, which were simply tunable by adjusting the order in the multiple transfer. This transfer method could effectively reduce the cost and time in the nanofabrication, as it did not require costly equipment, harsh synthesis conditions, and hazardous solvents.

Volume None
Pages None
DOI 10.1021/acsami.9b13203
Language English
Journal ACS applied materials & interfaces

Full Text