ACS chemical neuroscience | 2019

8-OH-DPAT Induces Compulsive-like Deficit in Spontaneous Alternation Behavior: Reversal by MDMA but Not Citalopram.

 
 
 
 

Abstract


Rodents exhibit natural exploratory behaviors, which can be measured by the spontaneous alternation behavior (SAB) test. Perseverance in this test induced by the 5-hydroxytryptamine 1A receptor (5-HT1AR) agonist, 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT), resembles compulsive behaviors observed in humans and manifests as reduced alternation ratio. This study characterized 8-OH-DPAT-induced perseverance in the SAB test in C57BL/6JOlaHsd male mice by coadministration of WAY100635, citalopram and the 5-HT releasing agent, 3,4-methylenedioxymethamphetamine (MDMA), to deepen the understanding of 5-HT-dependent mechanisms. The 5-HT1AR mechanism of 8-OH-DPAT (1.0 mg/kg, p < 0.01) on perseverance was confirmed by coadministration of the 5-HT1AR antagonist, WAY100635 (2.0 mg/kg, p < 0.05), which attenuated the effects of 8-OH-DPAT. Such effects could also be reversed by MDMA (1.0 mg/kg, p < 0.05; 10.0 mg/kg, p < 0.001) but not citalopram. These findings confirm the importance of 5-HT in regulating perseverative behavior. Future investigations are required to determine the predictive validity of the 8-OH-DPAT-disrupted SAB test as an inducible mouse model of compulsivity.

Volume None
Pages None
DOI 10.1021/acschemneuro.8b00593
Language English
Journal ACS chemical neuroscience

Full Text