ACS infectious diseases | 2021

Switching Bond: Generation of New Antimicrobial Peptides via the Incorporation of an Intramolecular Isopeptide Bond.

 
 
 
 
 
 

Abstract


Antimicrobial peptides (AMPs), which can be modified to kill a broad spectrum of microoganisms or a specific microorganism, are considered as promising alternatives to combat the rapidly widespread, resistant bacterial infections. However, there are still several obstacles to overcome. These include toxicity, stability, and the ability to interfere with the immune response and bacterial resistance. To overcome these challenges, we herein replaced the regular peptide bonds with isopeptide bonds to produce new AMPs based on the well-known synthetic peptides Amp1L and MSI-78 (pexiganan). Two new peptides Amp1EP and MSIEP were generated while retaining properties such as size, sequence, charge, and molecular weight. These new peptides have reduced toxicity toward murine macrophage (RAW 264.7) cells, human monocytic (THP-1) cells, and human red blood cells (hRBCs) and enhanced the stability toward proteolytic degradation. Importantly, the new peptides do not repress the pro-inflammatory cytokine and hence should not modulate the immune response. Structurally, the new peptides, Amp1EP and MSIEP, have a structure of random coils in contrast to the helical structures of the parental peptides as revealed by circular dichroism (CD) analysis. Their mode of action, assessed by flow cytometry, includes permeabilization of the bacterial membrane. Overall, we present here a new approach to modulate AMPs to develop antimicrobial peptides for future therapeutic purposes.

Volume None
Pages None
DOI 10.1021/acsinfecdis.1c00037
Language English
Journal ACS infectious diseases

Full Text