ACS nano | 2021

Morphology-Invariant Metallic Nanoparticles with Tunable Plasmonic Properties.

 
 
 
 
 
 
 
 

Abstract


Current methods for tuning the plasmonic properties of metallic nanoparticles typically rely on alternating the morphology (i.e., size and/or shape) of nanoparticles. The variation of morphology of plasmonic nanoparticles oftentimes impairs their performance in certain applications. In this study, we report an effective approach based on the control of internal structure to engineer morphology-invariant nanoparticles with tunable plasmonic properties. Specifically, these nanoparticles were prepared through selective growth of Ag on the inner surfaces of preformed Ag-Au alloyed nanocages as the seeds to form Ag@(Ag-Au) shell@shell nanocages. Plasmonic properties of the Ag@(Ag-Au) nanocages can be conveniently and effectively tuned by varying the amount of Ag deposited on the inner surfaces, during which the overall morphology of the nanocages remains unchanged. To demonstrate the potential applications of the Ag@(Ag-Au) nanocages, they were applied to colorimetric sensing of human carcinoembryonic antigen (CEA) that achieved low detection limits. This work provides a meaningful concept to design and craft plasmonic nanoparticles.

Volume None
Pages None
DOI 10.1021/acsnano.0c06123
Language English
Journal ACS nano

Full Text