ACS Omega | 2021

Computational Analysis of the Nicotine Oxidoreductase Mechanism by the ONIOM Method

 

Abstract


Nicotine oxidoreductase (NicA2) is a monoamine oxidase (MAO)-based flavoenzyme that catalyzes the oxidation of S-nicotine into N-methylmyosmine. Due to its nanomolar binding affinity toward nicotine, it is seen as an ideal candidate for the treatment of nicotine addiction. Based on the crystal structure of the substrate-bound enzyme, hydrophobic interactions mainly govern the binding of the substrate in the active site through Trp108, Trp364, Trp427, and Leu217 residues. In addition, Tyr308 forms H-bonding with the pyridyl nitrogen of the substrate. Experimental and computational studies support the hydride transfer mechanism for MAO-based enzymes. In this mechanism, a hydride ion transfers from the substrate to the flavin cofactor. In this study, computational models involving the ONIOM method were formulated to study the hydride transfer mechanism based on the crystal structure of the enzyme–substrate complex. The geometry and energetics of the hydride transfer mechanism were analyzed, and the roles of active site residues were highlighted.

Volume 6
Pages 22422 - 22428
DOI 10.1021/acsomega.1c03357
Language English
Journal ACS Omega

Full Text