ACS synthetic biology | 2021

A Whole-Cell Bacterial Biosensor for Blood Markers Detection in Urine.

 
 
 
 
 

Abstract


The early detection of blood in urine (hematuria) can play a crucial role in the treatment of serious diseases (e.g., infections, kidney disease, schistosomiasis, and cancer). Therefore, the development of low-cost portable biosensors for blood detection in urine has become necessary. Here, we designed an ultrasensitive whole-cell bacterial biosensor interfaced with an optoelectronic measurement module for heme detection in urine. Heme is a red blood cells (RBCs) component that is liberated from lysed cells. The bacterial biosensor includes Escherichia coli cells carrying a heme-sensitive synthetic promoter integrated with a luciferase reporter (luxCDABE) from Photorhabdus luminescens. To improve the bacterial biosensor performance, we re-engineered the genetic structure of luxCDABE operon by splitting it into two parts (luxCDE and luxAB). The luxCDE genes were regulated by the heme-sensitive promoter, and the luxAB genes were regulated by either constitutive or inducible promoters. We examined the genetic circuit s performance in synthetic urine diluent supplied with heme and in human urine supplied with lysed blood. Finally, we interfaced the bacterial biosensor with a light detection setup based on a commercial optical measurement single-photon avalanche photodiode (SPAD). The whole-cell biosensor was tested in human urine with lysed blood, demonstrating a low-cost, portable, and easy-to-use hematuria detection with an ON-to-OFF ratio of 6.5-fold for blood levels from 5 × 104 to 5 × 105 RBC per mL of human urine.

Volume None
Pages None
DOI 10.1021/acssynbio.0c00640
Language English
Journal ACS synthetic biology

Full Text