Accounts of chemical research | 2021

Manipulation of Interfacial Diffusion for Controlling Nanoscale Transformation.

 
 
 

Abstract


ConspectusThe unprecedented development of inorganic nanostructure synthesis has paved the way toward their broad applications in areas such as food science, agroforestry, energy conversion, and biomedicine. The precise manipulation of the nucleation and subsequent growth has been recognized as the central guiding principle for controlling the size and morphology of the nanostructures. However, conventional colloid syntheses based on direct precipitation reactions still have limitations in their versatility and extendibility. The crystal structure of a material determines the limited number of possible morphologies that its nanostructures can adopt. Further, as nucleation and growth kinetics are sensitive to not only the nature of the precipitation reactions but also ligands and ripening effect, rigorous control of reaction conditions must be established for every specific synthesis. In addition, multiple experimental parameters are entangled with each other, thereby requiring rigorous control of all reaction conditions. As a result, it is usually challenging to extend a synthetic recipe from one material to another. As an alternative method, the direct transformation of existing nanostructures into target ones has become an effective and robust approach capable of creating various complex nanostructures that are otherwise challenging to obtain using conventional methods. To this end, an in-depth understanding of nanoscale transformation toward the synthesis of inorganic nanostructures with diverse properties and applications is highly desirable.In this Account, we aim to reveal the critical effect of the interfacial diffusion on controlled nanoscale transformation. We first discuss how the interdiffusion rates determine the morphology and properties of bimetallic nanostructures. While equal interdiffusion rates lead to perfect mixing and generate fully alloyed nanostructures, interdiffusion at unequal rates creates vacancies in the fast diffusion side, which may cause dramatic morphological transformation to the nanostructures. Then, we introduce interfacial reactions, including the Kirkendall cavitation process, elimination reaction, and solid-state reaction, to promote the unbalanced interdiffusion and generalize nanoscale transformations in materials of various compositions, morphologies, and crystal structures. Finally, we discuss the use of capping ligands to inhibit the diffusion of atoms on one side of the interface in order to enable selective etching or transformation of the nanostructures. By modifying the nanostructured surface with specific capping ligands, the diffusion of surface atoms is restricted. When nanoparticles undergo chemical reactions (such as etching or heating), the outward diffusion of substances dominates, thereby successfully achieving chemical and morphological transformations. We believe that controlled interfacial diffusion can effectively manipulate nanoscale transformations, thus providing new strategies for the custom synthesis of multifunctional nanomaterials for various specific applications.

Volume None
Pages None
DOI 10.1021/acs.accounts.0c00743
Language English
Journal Accounts of chemical research

Full Text