Analytical chemistry | 2019

Facile preparation of boron and nitrogen co-doped green emission carbon quantum dots for detection of permanganate and captopril.

 
 
 
 
 
 

Abstract


A hydrothermal strategy for preparing boron and nitrogen co-doped carbon quantum dots was studied using the precursors of p-amino salicylic acid, boric acid and ethylene glycol dimethacrylate. The boron and nitrogen co-doped carbon quantum dots have high fluorescence intensity, good monodispersity, high stability, superior water solubility, and a fluorescence quantum yield of 19.6%. Their average size is 5 nm. Their maximum excitation and emission wavelengths are 380 nm and 520 nm, respectively. Permanganate (MnO4-) quenched boron and nitrogen co-doped carbon quantum dots fluorescence through inner filter effect and static quenching effects. The linear relation between quenching efficiency and MnO4- concentration ranged from 0.05 to 60 μmol/L with a detection limit of 13 nmol/L. In the presence of captopril, MnO4- was reduced to Mn2+ and the fluorescence of boron and nitrogen co-doped carbon quantum dots was recovered. The linear range between recovery and captopril concentration was from 0.1 to 60 μmol/L. The limit of detection was 0.03 μmol/L. The developed method can be employed as a sensitive fluorescence sensing platform for MnO4-. It has been successfully used for captopril detection in mouse plasma.

Volume None
Pages None
DOI 10.1021/acs.analchem.9b02938
Language English
Journal Analytical chemistry

Full Text