Bioconjugate chemistry | 2021

EpCAM-Targeting Aptamer Radiotracer for Tumor-Specific PET Imaging.

 
 
 
 
 

Abstract


Noninvasive in vivo imaging to measure the expression of EpCAM, a biomarker overexpressed in the majority of carcinoma tumors and metastatic lesions, is highly desirable for accurate tumor staging and therapy evaluation. Here, we report the use of an aptamer radiotracer to enable tumor-specific EpCAM-targeting PET imaging. Oligonucleotide aptamers are small molecular ligands that specifically bind with high affinity to their target molecules. For specific tumor imaging, an aptamer radiotracer was formulated by chelating a 64Cu isotope and DOTA-PEGylated aptamer sequence to target EpCAM. In vitro cell uptake assays demonstrated that the aptamer radiotracer specifically bound EpCAM-expressing breast cancer cells but did not react with off-target tumor cells. For in vivo tumor imaging, aptamer radiotracer was systemically administered into xenograft mice. MicroPET/CT scans revealed that the aptamer radiotracer rapidly highlighted xenograft tumors derived from MDA-MB-231 breast cancer cells (EpCAM positive) as early as 2 h postadministration with a gradually increasing tumor uptake signal that peaked at 24 h but not in lymphoma 937 tumors (EpCAM negative). In contrast, nonspecific background signals in the liver and kidneys were rapidly decreased postadministration. This proof-of-concept study demonstrates the utility of aptamer radiotracers for tumor-specific PET imaging.

Volume None
Pages None
DOI 10.1021/acs.bioconjchem.1c00188
Language English
Journal Bioconjugate chemistry

Full Text