Environmental science & technology | 2021

Anthropogenic-Biogenic Interactions at Night: Enhanced Formation of Secondary Aerosols and Particulate Nitrogen- and Sulfur-Containing Organics from β-Pinene Oxidation.

 
 
 
 
 
 

Abstract


Mixing of anthropogenic gaseous pollutants and biogenic volatile organic compounds impacts the formation of secondary aerosols, but still in an unclear manner. The present study explores secondary aerosol formation via the interactions between β-pinene, O3, NO2, SO2, and NH3 under dark conditions. Results showed that aerosol yield can be largely enhanced by more than 330% by NO2 or SO2 but slightly enhanced by NH3 by 39% when the ratio of inorganic gases to β-pinene ranged from 0 to 1.3. Joint effects of NO2 and SO2 and SO2 and NH3 existed as aerosol yields increased with NO2 but decreased with NH3 when SO2 was kept constant. Infrared spectra showed nitrogen-containing aerosol components derived from NO2 and NH3 and sulfur-containing species derived from SO2. Several particulate organic nitrates (MW 215, 229, 231, 245), organosulfates (MW 250, 264, 280, 282, 284), and nitrooxy organosulfates (MW 295, 311, 325, 327, and 343) were identified using high-resolution orbitrap mass spectrometry in NO2 and SO2 experiments, and their formation mechanism is discussed. Most of these nitrogen- and sulfur-containing species have been reported in ambient particles. Our results suggest that the complex interactions among β-pinene, O3, NO2, SO2, and NH3 during the night might serve as a potential pathway for the formation of particulate nitrogen- and sulfur-containing organics, especially in polluted regions with both anthropogenic and biogenic influences.

Volume None
Pages None
DOI 10.1021/acs.est.0c07879
Language English
Journal Environmental science & technology

Full Text