Environmental science & technology | 2019

Versatile Surface Modification of TFC Membrane by Layer-by-Layer Assembly of Phytic Acid-Metal Complexes for Comprehensively Enhanced FO Performance.

 
 
 
 
 

Abstract


Polyamide TFC membranes are widely applied in membrane-based water treatment but generally suffer various fouling problems. In this work, the layer-by-layer assembly of phytic acid (PA) and metal ions (M) is constructed on the surface TFC membrane for the first time, to improve the bio/organic fouling resistances and separation performance of TFC membranes simultaneously. The PA molecule with six phosphonic acid groups of strong chelation ability acts as the organic ligand, and the metal ion acts as the inorganic cross-linker, inducing the assembly of hydrophilic and antibacterial PA-M (Ag or Cu) complexes on the TFC membrane surface. Various characterizations including FTIR, XPS, SEM, AFM, and EDX are employed to confirm the successful and uniform modification of PA-M. FO performance of the PA-M modified TFC membranes, i.e., TFC_PA-Ag and TFC_PA-Cu, is optimized by varying PA concentration and assembly cycles, where the water flux can be improved by\xa057% and\xa068%, respectively, without compromising the membrane selectivity. Additionally, the PA-M modification improves the biofouling and organic fouling resistances of the TFC membrane remarkably, owing to the enhanced antibacterial ability and hydrophilicity. The modified TFC membranes are also proven to show the excellent stability by the quantitative release test.

Volume 53 6
Pages \n 3331-3341\n
DOI 10.1021/acs.est.8b06628
Language English
Journal Environmental science & technology

Full Text