Environmental science & technology | 2019

Nanoconfined Hydrated Zirconium Oxide for Selective Removal of Cu(II)-Carboxyl Complexes from High-Salinity Water via Ternary Complex Formation.

 
 
 
 
 

Abstract


Toxic metals are usually present as organic complexes in high-salinity effluents from various industries. The efficient removal of such metal complexes is an imperative but still challenging task due to their stable structure and high mobility. Herein, we propose a new strategy to remove Cu-carboxyl complexes from high-salinity water by using a commercially available nanocomposite HZO-201, i.e., nanohydrated zirconium oxide (HZO) confined inside anion exchanger D201. In contrast to D201 and a cation exchanger D001, which both adsorb Cu-citrate negligibly, HZO-201 exhibits preferable adsorption toward Cu-citrate (∼130 mg Cu/g-Zr) at high salinity (1.5 wt % NaCl). On the basis of scanning transmission electron microscopy energy-dispersive spectrometry (STEM-EDS), attenuated total reflection Fourier transform infrared (ATR-FTIR), and X-ray photoelectron spectrometry (XPS) analysis, the formation of ternary complex among Cu(II), citrate, and the embedded nano-HZO is evidenced to be responsible for the removal of Cu-citrate. The exhausted HZO-201 can be regenerated with a binary HCl-NaCl solution for repeated use for 5 cycles without capacity loss. Fixed-bed adsorption demonstrates that HZO-201 column is capable of producing ∼1150 bed volume (BV) clean water (<0.5 mg Cu/L) from simulated high-salinity wastewater, whereas only ∼10 BV and ∼60 BV was produced for the D001 and D201 columns, respectively. Furthermore, HZO-201 shows excellent removal of Cu(II) complexes with three other carboxyl ligands (oxalate, tartrate, and succinate).

Volume 53 9
Pages \n 5319-5327\n
DOI 10.1021/acs.est.9b00745
Language English
Journal Environmental science & technology

Full Text