Inorganic chemistry | 2021

meso-Substitution Activates Oxoiron(IV) Porphyrin π-Cation Radical Complex More Than Pyrrole-β-Substitution for Atom Transfer Reaction.

 
 
 
 

Abstract


There have been two known categories of porphyrins: a meso-substituted porphyrin like meso-tetramesitylporphyrin (TMP) and a pyrrole-β-substituted porphyrin like native porphyrins and 2,7,12,17-tetramethyl-3,8,13,18-tetramesitylporphyrin (TMTMP). To reveal the chemical and biological function of native hemes, we compare the reactivity of the oxoiron(IV) porphyrin π-cation radical complex (Compound I) of TMP (TMP-I) with that of TMTMP (TMTMP-I) for epoxidation, hydrogen abstraction, hydroxylation, sulfoxidation, and demethylation reactions. Kinetic analysis of these reactions indicated that TMP-I is much more reactive than TMTMP-I when the substrate is not sterically bulky. However, as the substrate is sterically bulkier, the difference of the reactivity between TMP-I and TMTMP-I becomes smaller, and the reactivity of TMP-I is comparable to that of TMTMP-I for a sterically hindered substrate. Since the redox potential of TMP-I is almost the same as that of TMTMP-I, we conclude that TMP-I is intrinsically more reactive than TMTMP-I for these atom transfer reactions, but the steric effect of TMP-I is stronger than that of TMTMP-I. This is contrary to the previous result for the single electron transfer reaction: TMTMP-I is faster than TMP-I. DFT calculations indicate that the orbital energies of the Fe═O moiety for TMTMP-I are higher than those for TMP-I. The difference in steric effect between TMP-I and TMTMP-I is explained by the distance from the mesityl group to the oxo ligand of Compound I. Significance of the pyrrole-β-substituted structure of the hemes in native enzymes is also discussed on the basis of this study.

Volume None
Pages None
DOI 10.1021/acs.inorgchem.0c03548
Language English
Journal Inorganic chemistry

Full Text