Inorganic chemistry | 2019

Effect of Redox Active Ligands on the Electrochemical Properties of Manganese Tricarbonyl Complexes.

 
 
 
 
 

Abstract


The synthesis, structural characterization, and electrochemical behavior of the neutral Mn(azpy)(CO)3(Br) 4 (azpy = 2-phenylazopyridine) complex is reported and compared with its structural analogue Mn(bipy)(CO)3(Br) 1 (bipy = 2,2 -bipyridine). 4 exhibits reversible two-electron reduction at a mild potential (-0.93 V vs Fc+/0 in acetonitrile) in contrast to 1, which exhibits two sequential one-electron reductions at -1.68 V and -1.89 V vs Fc+/0 in acetonitrile. The key electronic structure differences between 1 and 4 that lead to disparate electrochemical properties are investigated using a combination of Mn-K-edge X-ray absorption spectroscopy (XAS), Mn-Kβ X-ray emission spectroscopy (XES), and density functional theory (DFT) on 1, 4, their debrominated analogues, [Mn(L)(CO)3(CH3CN)][CF3SO3] (L = bipy 2, azpy 5), and two-electron reduced counterparts [Mn(bipy)(CO)3][K(18-crown-6)] 3 and [Mn(azpy)(CO)3][Cp2Co] 6. The results reveal differences in the distribution of electrons about the CO and bidentate ligands (bipy and azpy), particularly upon formation of the highly reduced, formally Mn(-1) species. The data show that the degree of ligand noninnocence and resulting redox-activity in Mn(L)(CO)3 type complexes impacts not only the reducing power of such systems, but the speciation of the reduced complexes via perturbation of the monomer-dimer equilibrium in the singly reduced Mn(0) state. This study highlights the role of redox-active ligands in tuning the reactivity of metal centers involved in electrocatalytic transformations.

Volume 58 11
Pages \n 7453-7465\n
DOI 10.1021/acs.inorgchem.9b00652
Language English
Journal Inorganic chemistry

Full Text