Journal of agricultural and food chemistry | 2019

Genipin-aided Protein Crosslinking to Modify Structural and Rheological Properties of Emulsion-filled Hemp Protein Hydrogels.

 
 
 

Abstract


Genipin, a natural electrophilic crosslinker, was applied (5, 10, 20, and 30 mM) to modify hempseed protein isolate (HPI). Genipin treatments resulted in general losses of total sulfhydryls (up to 2.9 nmol/mg) and free amines (up to 77.3 nmol/mg). Surface hydrophobicity decreased by nearly 90% with 30 mM genipin, corresponding to similar tryptophan fluorescence quenching. The genipin treatment converted HPI into highly crosslinked polymers. Hydrogels formed with such polymers when also incorporated with hemp oil emulsions exhibited substantially enhanced gelling ability: up to 3.3- and 2.6-fold increases, respectively, in gel strength and gel elasticity over genipin-untreated protein. The genipin-modified composite gels also exhibited superior water-holding capacity. Microstructural analysis revealed a compact gel network filled with protein-coated oil globules that interacted intimately with the protein matrix when treated with genipin. Such gels remained readily digestible. Hence, genipin-treated hemp protein hydrogels show promise as functional food components.

Volume None
Pages None
DOI 10.1021/acs.jafc.9b05665
Language English
Journal Journal of agricultural and food chemistry

Full Text