Journal of chemical information and modeling | 2019

Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes

 
 
 
 
 
 
 

Abstract


Understanding unbinding kinetics of protein-ligand systems is of great importance for the design of ligands with desired specificity and safety. In recent years, enhanced sampling techniques have emerged as effective tools for studying unbinding kinetics of protein-ligand systems at the atomistic level. However, in many protein-ligand systems, the ligand unbinding processes are strongly coupled to protein conformational changes and how to disclose the hidden degrees of freedom closely related to the protein conformational changes so that sampling is enhanced over these degrees of freedom remains a great challenge. Here, we show how potential-scaled molecular dynamics (sMD) and infrequent metadynamics (InMetaD) simulation techniques can be combined to successfully reveal the unbinding mechanism of ASEM (3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-[18F]fluo-rodibenzo[b,d]thiophene 5,5-dioxide) from a chimera structure of the α7-nicotinic acetylcholine receptor. By using sMD simulations, we disclosed that the close to open conformational change of loop C plays a key role in the ASEM unbinding process. By carrying out InMetaD simulations with this conformational change taken into account as an additional collective variable, we further captured the key states in the unbinding process and clarified the unbinding mechanism of ASEM from the protein. Our work indicates that combining sMD and InMetaD simulations techniques can be an effective approach for revealing the unbinding mechanism of a protein-ligand system where protein conformational changes control the unbinding process.

Volume None
Pages None
DOI 10.1021/acs.jcim.9b00523
Language English
Journal Journal of chemical information and modeling

Full Text