Journal of chemical theory and computation | 2021

Accurate Electronic Excitation Energies in Full-Valence Active Space via Bootstrap Embedding.

 
 
 

Abstract


Fragment embedding has been widely used to circumvent the high computational scaling of using accurate electron correlation methods to describe the electronic ground states of molecules and materials. However, similar applications that utilize fragment embedding to treat electronic excited states are comparably less reported in the literature. The challenge here is twofold. First, most fragment embedding methods are most effective when the property of interest is local, but the change of the wave function upon excitation is nonlocal in general. Second, even for local excitations, an accurate estimate of, for example, the excitation energy can still be challenging owing to the need for a balanced treatment of both the ground and the excited states. In this work, we show that bootstrap embedding (BE), a fragment embedding method developed recently by our group, is promising toward describing general electronic excitations. Numerical simulations show that the excitation energies in full-valence active space (FVAS) can be well-estimated by BE to an error of ∼0.05 eV using relatively small fragments, for both local excitations and the excitations of some large dye molecules that exhibit strong charge-transfer characters. We hence anticipate BE to be a promising solution to accurately describing the excited states of large chemical systems.

Volume None
Pages None
DOI 10.1021/acs.jctc.0c01221
Language English
Journal Journal of chemical theory and computation

Full Text