Journal of chemical theory and computation | 2021

Benchmark of the Extension of Frozen-Density Embedding Theory to Nonvariational Correlated Methods: The Embedded-MP2 Case.

 
 
 
 
 

Abstract


The extension of the frozen-density embedding theory for nonvariational methods [J. Chem. Theory Comput. 2020, 16, 6880] was utilized to evaluate intermolecular interaction energies for complexes in the Zhao-Truhlar basis set. In the applied method (FDET-MP2-FAT-LDA), the same auxiliary system is used to evaluate the correlation energy by means of the second-order Møller-Plesset perturbation theory (MP2), as in our previous work [J. Chem. Phys. 2019, 150, 121101]. Local density approximation is used for ExcTnad[ρA,ρB] in both cases. Additionally, the contribution to the energy due to the neglected correlation potential was evaluated and analyzed. The domain of applicability of the local density approximation for ExcTnad[ρA,ρB] was determined based on deviations from the interaction energies from the conventional MP2 calculations. The local density approximation for ExcTnad[ρA,ρB] performs well for hydrogen- or dipole-bound complexes. The relative errors in the interaction energy lie within 3-30%. While for charge-transfer complexes, this approximation fails consistently, and for other types of complexes, the performance of this approximation is not systematic. The sources of error are discussed in detail.

Volume None
Pages None
DOI 10.1021/acs.jctc.1c00228
Language English
Journal Journal of chemical theory and computation

Full Text