Journal of Chemical Theory and Computation | 2021

Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach

 
 
 
 
 
 
 
 

Abstract


Modeling the ultrafast photoinduced dynamics and reactivity of adsorbates on metals requires including the effect of the laser-excited electrons and, in many cases, also the effect of the highly excited surface lattice. Although the recent ab initio molecular dynamics with electronic friction and thermostats, (Te,Tl)-AIMDEF [AlducinM.;Phys. Rev. Lett.2019, 123, 246802]31922860, enables such complex modeling, its computational cost may limit its applicability. Here, we use the new embedded atom neural network (EANN) method [ZhangY.;J. Phys. Chem. Lett.2019, 10, 496231397157] to develop an accurate and extremely complex potential energy surface (PES) that allows us a detailed and reliable description of the photoinduced desorption of CO from the Pd(111) surface with a coverage of 0.75 monolayer. Molecular dynamics simulations performed on this EANN-PES reproduce the (Te,Tl)-AIMDEF results with a remarkable level of accuracy. This demonstrates the outstanding performance of the obtained EANN-PES that is able to reproduce available density functional theory (DFT) data for an extensive range of surface temperatures (90–1000 K); a large number of degrees of freedom, those corresponding to six CO adsorbates and 24 moving surface atoms; and the varying CO coverage caused by the abundant desorption events.

Volume 17
Pages 4648 - 4659
DOI 10.1021/acs.jctc.1c00347
Language English
Journal Journal of Chemical Theory and Computation

Full Text