Journal of chemical theory and computation | 2019

Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores.

 
 

Abstract


Performance of DFT functionals with different percentages of exact Hartree-Fock exchange energy (EX) is assessed for recovery of the CC2 reference one- (OPA) and two-photon absorption (TPA) spectra of fluorescent proteins chromophores in vacuo. The investigated DFT functionals, together with their EX contributions are BLYP (0%), B3LYP (20%), B1LYP (25%), BHandHLYP (50%), and CAM-B3LYP (19% at short range and 65% at long range). Our test set consists of anionic and neutral chromophores as naturally occurring in the fluorescent proteins. For the first time, we compare TDDFT and CC2 methods for higher excited states than the S1 state, exhibiting relatively large TPA intensity. Our TDDFT results for neutral chromophores reveal an increase in excitation energies as well as TPA and OPA intensities errors, compared to CC2-derived results, as the DFT functional contains less exact exchange. The long-range-corrected CAM-B3LYP functional performs the best, closely followed by BHandHLYP, while BLYP usually significantly underestimates all investigated spectral properties, hence being the worst in reproducing the reference CC2 results. The hybrid B3LYP and B1LYP functionals can be roughly placed in between. We propose that TDDFT may underestimate the TPA intensities for neutral chromophores of fluorescent proteins due to underestimated oscillator strengths between some excited states. In the case of anionic chromophores, we find that B3LYP and B1LYP functionals overcome others in terms of reproducing CC2 excitation energies. On the other hand, however, TPA intensity is usually significantly underestimated, and in this respect, CAM-B3LYP functional seems to be again superior. In contrast to the case of neutral chromophores, it seems that a large magnitude of excited-state dipole moments or changes in dipole moments upon excitation may be the driving force behind high TPA transition moments.

Volume 15 1
Pages \n 490-508\n
DOI 10.1021/acs.jctc.8b00769
Language English
Journal Journal of chemical theory and computation

Full Text