The journal of physical chemistry. A | 2021

Bonding, Thermodynamics, and Dissociation Dynamics of NiO+ and NiS+ Determined by Photofragment Imaging and Theory.

 
 
 

Abstract


We use photofragment ion imaging and ab initio calculations to determine the bond strength and photodissociation dynamics of the nickel oxide (NiO+) and nickel sulfide (NiS+) cations. NiO+ photodissociates broadly from 20350 to 32000 cm-1, forming ground state products Ni+(2D) + O(3P) below ∼29000 cm-1. Above this energy, Ni+(4F) + O(3P) products become accessible and dominate over the ground state channel. In certain images, product spin-orbit levels are resolved, and spin-orbit propensities are determined. Image anisotropy and the results of MRCI calculations suggest NiO+ photodissociates via a 3 4Σ- ← X 4Σ- transition above the Ni+(4F) threshold and via 3 4Σ-, 2 4Σ-, and/or 2 4Π and 3 4Π excited states below the 4F threshold. The photodissociation spectrum of NiS+ from 19900 to 23200 cm-1 is highly structured, with ∼12 distinct vibronic peaks, each containing underlying substructure. Above 21600 cm-1, the Ni+(2D5/2) + S(3P) and Ni+(2D3/2) + S(3P) product spin-orbit channels compete, with a branching ratio of ∼2:1. At lower energy, Ni+(2D5/2) is formed exclusively, and S(3P2) and S(3P1) spin-orbit channels are resolved. MRCI calculations predict the ground state of NiS+ to be one of two nearly degenerate states, the 1 4Σ- and 1 4Δ. Based on images and spectra, the ground state of NiS+ is assigned as 4Δ7/2, with the 1 4Σ3/2- and 1 4Σ1/2- states 81 ± 30 and 166 ± 50 cm-1 higher in energy, respectively. The majority of the photodissociation spectrum is assigned to transitions from the 1 4Δ state to two overlapping, predissociative excited 4Δ states. Our D0 measurements for NiO+ (D0 = 244.6 ± 2.4 kJ/mol) and NiS+ (D0 = 240.3 ± 1.4 kJ/mol) are more precise and closer to each other than previously reported values. Finally, using a recent measurement of D0(NiS), we derive a more precise value for IE (NiS): 8.80 ± 0.02 eV (849 ± 1.7 kJ/mol).

Volume None
Pages None
DOI 10.1021/acs.jpca.1c05405
Language English
Journal The journal of physical chemistry. A

Full Text