The Journal of Physical Chemistry. C, Nanomaterials and Interfaces | 2021

Electrochemical Stability and Degradation Mechanisms of Commercial Carbon-Supported Gold Nanoparticles in Acidic Media

 
 
 
 
 
 
 
 

Abstract


Electrochemical stability of a commercial Au/C catalyst in an acidic electrolyte has been investigated by an accelerated stress test (AST), which consisted of 10,000 voltammetric scans (1 V/s) in the potential range between 0.58 and 1.41 VRHE. Loss of Au electrochemical surface area (ESA) during the AST pointed out to the degradation of Au/C. Coupling of an electrochemical flow cell with ICP-MS showed that only a minor amount of gold is dissolved despite the substantial loss of gold ESA during the AST (∼35% of initial value remains at the end of the AST). According to the electrochemical mass spectrometry experiments, carbon corrosion occurs during the AST but to a minor extent. By using identical location scanning electron microscopy and identical location transmission electron microscopy, it was possible to discern that the dissolution of small Au particles (<5 nm) within the polydisperse Au/C sample is the main degradation mechanism. The mass of such particles gives only a minor contribution to the overall Au mass of the polydisperse sample while giving a major contribution to the overall ESA, which explains a significant loss of ESA and minor loss of mass during the AST. The addition of low amounts of chloride anions (10–4 M) substantially promoted the degradation of gold nanoparticles. At an even higher concentration of chlorides (10–2 M), the dissolution of gold was rather effective, which is useful from the recycling point of view when rapid leaching of gold is desirable.

Volume 125
Pages 635 - 647
DOI 10.1021/acs.jpcc.0c10033
Language English
Journal The Journal of Physical Chemistry. C, Nanomaterials and Interfaces

Full Text