The journal of physical chemistry letters | 2021

Learning the Exciton Properties of Azo-dyes.

 
 
 
 

Abstract


The ab initio determination of electronic excited state (ES) properties is the cornerstone of theoretical photochemistry. Yet, traditional ES methods become impractical when applied to fairly large molecules, or when used on thousands of systems. Machine learning (ML) techniques have demonstrated their accuracy at retrieving ES properties of large molecular databases at a reduced computational cost. For these applications, nonlinear algorithms tend to be specialized in targeting individual properties. Learning fundamental quantum objects potentially represents a more efficient, yet complex, alternative as a variety of molecular properties could be extracted through postprocessing. Herein, we report a general framework able to learn three fundamental objects: the hole and particle densities, as well as the transition density. We demonstrate the advantages of targeting those outputs and apply our predictions to obtain properties, including the state character and the exciton topological descriptors, for the two bands (nπ* and ππ*) of 3427 azoheteroarene photoswitches.

Volume None
Pages \n 5957-5962\n
DOI 10.1021/acs.jpclett.1c01425
Language English
Journal The journal of physical chemistry letters

Full Text