The journal of physical chemistry letters | 2021

Making Nitronaphthalene Fluoresce.

 
 
 
 
 
 
 
 
 
 
 

Abstract


Nitroaromatic compounds are inherently nonfluorescent, and the subpicosecond lifetimes of the singlet excited states of many small nitrated polycyclic aromatic hydrocarbons, such as nitronaphthalenes, render them unfeasible for photosensitizers and photo-oxidants, despite their immensely beneficial reduction potentials. This article reports up to a 7000-fold increase in the singlet-excited-state lifetime of 1-nitronaphthalene upon attaching an amine or an N-amide to the ring lacking the nitro group. Varying the charge-transfer (CT) character of the excited states and the medium polarity balances the decay rates along the radiative and the two nonradiative pathways and can make these nitronaphthalene derivatives fluoresce. The strong electron-donating amine suppresses intersystem crossing (ISC) but accommodates CT pathways of nonradiate deactivation. Conversely, the N-amide does not induce a pronounced CT character but slows down ISC enough to achieve relatively long lifetimes of the singlet excited state. These paradigms are key for the pursuit of electron-deficient (n-type) organic conjugates with promising optical characteristics.

Volume None
Pages \n 10295-10303\n
DOI 10.1021/acs.jpclett.1c02155
Language English
Journal The journal of physical chemistry letters

Full Text