The journal of physical chemistry letters | 2021

Polaritonic Unitary Coupled Cluster for Quantum Computations.

 
 

Abstract


In the field of polaritonic chemistry, strong light-matter interactions are used to alter chemical reactions inside optical cavities. To understand these processes, the development of reliable theoretical models is essential. While traditional methods have to balance accuracy and system size, new developments in quantum computing offer a path for accurate calculations on currently available quantum devices. Here, we introduce the quantum electrodynamics unitary coupled cluster (QED-UCC) method combined with the Variational Quantum Eigensolver algorithm, as well as the quantum electrodynamics equation-of-motion (QED-EOM) method formulated in the qubit basis that allow accurate calculations of ground-state and excited-state properties of strongly coupled light-matter systems suitable for quantum computers. These methods show excellent agreement with the exact reference results and can outperform their traditional counterparts when strong electronic correlations become significant. This work sets the stage for future developments of polaritonic quantum chemistry methods suitable for both classical and quantum computers.

Volume None
Pages \n 9100-9107\n
DOI 10.1021/acs.jpclett.1c02659
Language English
Journal The journal of physical chemistry letters

Full Text