Langmuir : the ACS journal of surfaces and colloids | 2021

Criteria Governing Rod Formation and Growth in Nonionic Polymer Micelles.

 
 
 

Abstract


Self-assembled wormlike micelles (WLMs) are widely studied in small-molecule surfactants due to their unique ability to break and recombine; however, less is known about the structure and dynamics of nonionic polymer WLMs. Here, solutions of seven triblock poloxamers, composed of poly(propylene oxide) (PPO) midblocks and poly(ethylene oxide) (PEO) end blocks, are comprehensively examined to determine the role of poloxamer composition, temperature, and inorganic salt type and concentration on rod formation and subsequent elongation into WLMs. Phase separation and sphere-to-rod transition temperatures were quantified via cloud point measurements and shear rheology, respectively, and corroborated with small-angle neutron scattering (SANS). The local microstructure of resulting rodlike micelles is remarkably similar across poloxamer type and sodium fluoride (NaF) or sodium chloride (NaCl) content. Salt addition reduces transition temperatures, with the most pronounced effects for poloxamers with high PEO molecular weights and PEO fractions. Between these two temperatures, several poloxamers elongate into WLMs, where shear rheology detects increases in viscosity up to 6 orders of magnitude. Despite similar local microstructures, poloxamer identity and salt content impact micelle growth substantially, where large poloxamers with lower PEO fractions exhibit the highest viscosities and longest relaxation times. While sodium fluoride has little impact on micelle growth, increasing NaCl concentration dramatically increases the WLM viscosity and relaxation time. This result is explained by different interactions of each salt with the micelle: whereas NaF interacts primarily with PEO chains, NaCl may also partition to the PPO/PEO interface in low levels, increasing micelle surface tension, scission energy, and contour length.

Volume None
Pages None
DOI 10.1021/acs.langmuir.1c01570
Language English
Journal Langmuir : the ACS journal of surfaces and colloids

Full Text