Langmuir : the ACS journal of surfaces and colloids | 2019

Absolute Orientations of Water Molecules at Zwitterionic Polymer Interfaces and Interfacial Dynamics after Salt Exposure.

 
 
 
 
 

Abstract


Nonfouling zwitterionic polymers have wide applications ranging from the naval industry to biomedical engineering. Strong hydration at polymer surfaces has been proven to be crucial to their nonfouling property, but the absolute orientations of water molecules on the polymers and the competition between water and salt binding have not been elucidated. In this work, the absolute orientations of water molecules on two zwitterionic polymer brushes, poly(carboxybetaine methacrylate) (pCBMA) and poly(sulfobetaine methacrylate) (pSBMA), were measured using regular and phase-sensitive sum frequency generation (SFG) vibrational spectroscopy. The pH-dependent studies in a pH range from 2 to 12 showed that at a pH of 7, the water absolute orientations are different on the pCBMS and pSBMA surfaces. Phase-sensitive SFG studies confirmed the results obtained from the pH-dependent measurements. Salt effects on the hydration of zwitterionic polymers were examined as a function of time, which indicated that the pCBMA surface and the associated interfacial water exhibit a slow restructuring process after salt binding (likely due to the strong binding of pCBMA with water), whereas the surface of pSBMA and the associated water have a fast change after salt binding.

Volume 35 5
Pages \n 1327-1334\n
DOI 10.1021/acs.langmuir.8b01515
Language English
Journal Langmuir : the ACS journal of surfaces and colloids

Full Text