Molecular pharmaceutics | 2019

Measurement of hepatic ABCB1 and ABCG2 transport activity with [11C]tariquidar and PET in humans and mice.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in the canalicular membrane of hepatocytes mediate the biliary excretion of drugs and drug metabolites. To measure hepatic ABCB1 and ABCG2 activity, we performed positron emission tomography (PET) scans with the ABCB1/ABCG2 substrate [11C]tariquidar in healthy volunteers and wild-type, Abcb1a/b( -/ -), Abcg2(- /- ) and Abcb1a/b(- / -)Abcg2(- / -) mice without and with co-administration of unlabeled tariquidar. PET data were analyzed with a 3-compartment pharmacokinetic model. [11C]Tariquidar underwent hepatobiliary excretion in both, humans and mice, and tariquidar co-administration caused a significant reduction in the rate constant for transfer of radioactivity from liver into bile (by -74% in humans and by -62% in wild-type mice), suggesting inhibition of canalicular efflux transporter activity. Radio-thin-layer chromatography analysis revealed that the majority of radioactivity (> 87%) in mouse liver and bile was composed of unmetabolized [11C]tariquidar. PET data in transporter knockout mice revealed that both ABCB1 and ABCG2 mediated biliary excretion of [11C]tariquidar. In vitro experiments indicated that tariquidar is not a substrate of major hepatic basolateral uptake transporters (SLCO1B1, SLCO1B3, SLCO2B1, SLC22A1 and SLC22A3). Our data suggest that [11C]tariquidar can be used to measure hepatic canalicular ABCB1/ABCG2 transport activity without a confounding effect of uptake transporters.

Volume None
Pages None
DOI 10.1021/acs.molpharmaceut.9b01060
Language English
Journal Molecular pharmaceutics

Full Text