Journal of the American Chemical Society | 2021

Photochemical Deracemization of Primary Allene Amides by Triplet Energy Transfer: A Combined Synthetic and Theoretical Study.

 
 
 
 
 

Abstract


The photochemical deracemization of 2,4-disubstituted 2,3-butadienamides (allene amides) was investigated both experimentally and theoretically. The reaction was catalyzed by a thioxanthone which is covalently linked to a chiral 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one skeleton providing a U-shaped arrangement of the sensitizing unit relative to a potential hydrogen-bonding site. Upon irradiation at λ = 420 nm in the presence of the sensitizer (2.5 mol %), the amides reached at -10\xa0°C a photostationary state in which one enantiomer prevailed. The enantioenriched allene amides (70-93% ee) were isolated in 74% to quantitative yield (19 examples). Based on luminescence data and DFT calculations, energy transfer from the thioxanthone to the allene amides is thermodynamically feasible, and the achiral triplet allene intermediate was structurally characterized. Hydrogen bonding of the amide enantiomers to the sensitizer was monitored by NMR titration. The experimental association constants (Ka) were similar (59.8 vs 25.7 L·mol-1). DFT calculations, however, revealed a significant difference in the binding properties of the two enantiomers. The major product enantiomer exhibits a noncovalent dispersion interaction of its arylmethyl group to the external benzene ring of the thioxanthone, thus moving away the allene from the carbonyl chromophore. The minor enantiomer displays a CH-π interaction of the hydrogen atom at the terminal allene carbon atom to the same benzene ring, thus forcing the allene into close proximity to the chromophore. The binding behavior explains the observed enantioselectivity which, as corroborated by additional calculations, is due to a rapid triplet energy transfer within the substrate-catalyst complex of the minor enantiomer.

Volume None
Pages None
DOI 10.1021/jacs.1c05286
Language English
Journal Journal of the American Chemical Society

Full Text