Journal of the American Chemical Society | 2021

Optical Kerr Effect of Liquid Acetonitrile Probed by Femtosecond Time-Resolved X-ray Liquidography.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Optical Kerr effect (OKE) spectroscopy is a method that measures the time-dependent change of the birefringence induced by an optical laser pulse using another optical laser pulse and has been used often to study the ultrafast dynamics of molecular liquids. Here we demonstrate an alternative method, femtosecond time-resolved X-ray liquidography (fs-TRXL), where the microscopic structural motions related to the OKE response can be monitored using a different type of probe, i.e., X-ray solution scattering. By applying fs-TRXL to acetonitrile and a dye solution in acetonitrile, we demonstrate that different types of molecular motions around photoaligned molecules can be resolved selectively, even without any theoretical modeling, based on the anisotropy of two-dimensional scattering patterns and extra structural information contained in the q-space scattering data. Specifically, the dynamics of reorientational (libration and orientational diffusion) and translational (interaction-induced motion) motions are captured separately by anisotropic and isotropic scattering signals, respectively. Furthermore, the two different types of reorientational motions are distinguished from each other by their own characteristic scattering patterns and time scales. The measured time-resolved scattering signals are in excellent agreement with the simulated scattering signals based on a molecular dynamics simulation for plausible molecular configurations, providing the detailed structural description of the OKE response in liquid acetonitrile.

Volume None
Pages None
DOI 10.1021/jacs.1c06088
Language English
Journal Journal of the American Chemical Society

Full Text