Journal of the American Chemical Society | 2021

Unified Approach to Imidodiphosphate-Type Brønsted Acids with Tunable Confinement and Acidity

 
 
 
 
 
 
 

Abstract


We have designed and realized an efficient and operationally simple single-flask synthesis of imidodiphosphate-based Brønsted acids. The methodology proceeds via consecutive chloride substitutions of hexachlorobisphosphazonium salts, providing rapid access to imidodiphosphates (IDP), iminoimidodiphosphates (iIDP), and imidodiphosphorimidates (IDPi). These privileged acid catalysts feature a broad acidity range (pKa from ∼11 to <2 in MeCN) and a readily tunable confined active site. Our approach enables access to previously elusive catalyst scaffolds with particularly high structural confinement, one of which catalyzes the first highly enantioselective (>95:5 er) sulfoxidation of methyl n-propyl sulfide. Furthermore, the methodology delivers a novel, rationally designed super acidic catalyst motif, imidodiphosphorbis(iminosulfonylimino)imidate (IDPii), the extreme reactivity of which exceeds commonly employed super-Brønsted acids, such as trifluoromethanesulfonic acid. The unique reactivity of one such IDPii catalyst has been demonstrated in the first α-methylation of a silyl ketene acetal with methanol as the electrophilic alkylating reagent.

Volume 143
Pages 14835 - 14844
DOI 10.1021/jacs.1c07067
Language English
Journal Journal of the American Chemical Society

Full Text