Journal of the American Chemical Society | 2019

Disodium Salts of Pseudoephedrine-Derived Myers Enolates: Stereoselectivity and Mechanism of Alkylation.

 
 
 
 

Abstract


Pseudoephedrine-derived dianionic Myers enolates were generated using sodium diisopropylamide (NaDA) in THF solution. The reactivities and selectivities of the disodium salts largely mirror those of the dilithium salts but without the requisite large excesses of inorganic salts (LiCl) or mandated dilute solutions. The disodium salts require careful control of temperature to preclude deleterious aggregate aging effects traced to changes in the aggregate structure and intervening O-alkylations. Structural studies and density functional theory (DFT) computations show a dominant highly symmetric polyhedron quite different from the lithium analogue. No enolate-NaDA mixed aggregates are observed with excess NaDA. Rate studies show an alkylation mechanism involving an intervening tetramer-monomer pre-equilibrium followed by rate-limiting alkylation of tetrasolvated monomers. DFT computations were conducted to explore the possible influences on stereochemistry. A crystal deriving from samples aged at ambient temperature contains six dianionic subunits and two monoanionic (alkoxide-only) subunits. A new preparation of concentrated solutions of NaDA in THF solution is described.

Volume None
Pages None
DOI 10.1021/jacs.9b08176
Language English
Journal Journal of the American Chemical Society

Full Text