Nature Physics | 2019

Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Epithelial monolayers are one-cell-thick tissue sheets that line most of the body surfaces, separating internal and external environments. As part of their function, they must withstand extrinsic mechanical stresses applied at high strain rates. However, little is known about how monolayers respond to mechanical deformations. Here, by subjecting suspended epithelial monolayers to stretch, we find that they dissipate stresses on a minute timescale and that relaxation can be described by a power law with an exponential cut-off at timescales larger than about 10\u2009s. This process involves an increase in monolayer length, pointing to active remodelling of cellular biopolymers at the molecular scale during relaxation. Strikingly, monolayers consisting of tens of thousands of cells relax stress with similar dynamics to single rounded cells, and both respond similarly to perturbations of the actomyosin cytoskeleton. By contrast, cell–cell junctional complexes and intermediate filaments do not relax tissue stress, but form stable connections between cells, allowing monolayers to behave rheologically as single cells. Taken together, our data show that actomyosin dynamics governs the rheological properties of epithelial monolayers, dissipating applied stresses and enabling changes in monolayer length.Stress relaxation in cell monolayers shows remarkable similarities with that of single cells, suggesting the rheology of epithelial tissues is mediated by the actomyosin cortex—with dynamics reminiscent of those on a cellular level.

Volume None
Pages 1-9
DOI 10.1038/S41567-019-0516-6
Language English
Journal Nature Physics

Full Text