Experimental & Molecular Medicine | 2019

Rbfox2 dissociation from stress granules suppresses cancer progression

 
 
 
 
 

Abstract


Stress granules (SGs) are stalled translation initiation complexes comprising untranslated mRNAs and RNA-binding proteins (RBPs). RBP fox-1 homolog 2 (Rbfox2), a component of SGs, binds to retinoblastoma 1 (RB1) mRNA, which is closely related to cancer progression; however, the role of Rbfox2 in cancer progression remains largely unknown. In this study, we confirmed that Rbfox2, which is present in the nucleus as a splicing regulator, localizes to the cytoplasm of human colon cancer tissues and that induction of Rbfox2 dissociation from SGs by resveratrol treatment inhibits cancer progression. We also observed that Rbfox2 in SGs inhibited RB1 protein expression and promoted cell cycle progression. Additionally, resveratrol treatment inhibited SG-mediated Rbfox2 localization, further inhibiting RB1 protein expression, and inhibited specific Rbfox2 localization to the cytoplasm in melanoma B16-F10 cells, thereby effectively inhibiting metastasis and tumor growth ability. These results indicate that Rbfox2 dissociation from SGs attenuates cancer progression and offer insight into the mechanism associated with Rbfox2 dissociation, thereby marking Rbfox2 as a potential candidate target for cancer therapy.Cancer: Interfering with RNA processing to prevent tumor growthResveratrol, an antioxidant found in red grapes, slows cancer progression by interfering with the localization and function of the RNA-binding protein Rbfox2. A study led by Kee Kim at Chungnam National University and Su-Hyung Park at Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, showed that in human colon cancer cells Rbfox2 is located in the cytoplasm where it promotes cell proliferation by blocking the assembly of the tumor suppressor protein RB1. Treatment with resveratrol prevented the migration of Rbfox2 from the nucleus to the cytoplasm and significantly reduced tumor growth in a mouse model of melanoma. This study not only sheds light on the protective effects of resveratrol but also suggests that Rbfox2 could be a potential target for the development of new anticancer drugs.

Volume 51
Pages None
DOI 10.1038/s12276-019-0246-y
Language English
Journal Experimental & Molecular Medicine

Full Text