Nature Communications | 2019

Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR

 
 
 
 
 
 

Abstract


Lignin is a complex aromatic biopolymer that strengthens and waterproofs plant secondary cell walls, enabling mechanical stability in trees and long-distance water transport in xylem. Lignin removal is a key step in paper production and biomass conversion to biofuels, motivating efforts to re-engineer lignin biosynthesis. However, the physical nature of lignin’s interactions with wall polysaccharides is not well understood. Here we show that lignin self-aggregates to form highly hydrophobic and dynamically unique nanodomains, with extensive surface contacts to xylan. Solid-state NMR spectroscopy of intact maize stems, supported by dynamic nuclear polarization, reveals that lignin has abundant electrostatic interactions with the polar motifs of xylan. Lignin preferentially binds xylans with 3-fold or distorted 2-fold helical screw conformations, indicative of xylans not closely associated with cellulose. These findings advance our knowledge of the molecular-level organization of lignocellulosic biomass, providing the structural foundation for optimization of post-harvest processing for biofuels and biomaterials.The interactions of lignin with polysaccharides in plant secondary cell walls are not well understood. Here the authors employ solid-state NMR measurements to analyse intact stems of maize, Arabidopsis, switchgrass and rice and observe that lignin self-aggregates and forms highly hydrophobic microdomains that make extensive surface contacts to xylan.

Volume 10
Pages None
DOI 10.1038/s41467-018-08252-0
Language English
Journal Nature Communications

Full Text