Nature Communications | 2019

Spontaneous rotation can stabilise ordered chiral active fluids

 
 

Abstract


Active hydrodynamic theories are a powerful tool to study the emergent ordered phases of internally driven particles such as bird flocks, bacterial suspension and their artificial analogues. While theories of orientationally ordered phases are by now well established, the effect of chirality on these phases is much less studied. In this paper, we present a complete dynamical theory of orientationally ordered chiral particles in two-dimensional incompressible systems. We show that phase-coherent states of rotating chiral particles are remarkably stable in both momentum-conserved and non-conserved systems in contrast to their non-rotating counterparts. Furthermore, defect separation—which drives chaotic flows in non-rotating active fluids—is suppressed by intrinsic rotation of chiral active particles. We thus establish chirality as a source of dramatic stabilisation in active systems, which could be key in interpreting the collective behaviors of some biological tissues, cytoskeletal systems and collections of bacteria.Active fluids consist of self-driven particles which consume energy to drive spontaneous flow. Here the authors present a general theory of two-dimensional chiral active particles which spontaneously rotate and show that they can form a stable, coherently-rotating phase.

Volume 10
Pages None
DOI 10.1038/s41467-019-08914-7
Language English
Journal Nature Communications

Full Text