Nature Communications | 2019

Emergence of self-affine surfaces during adhesive wear

 
 
 
 

Abstract


Friction and wear depend critically on surface roughness and its evolution with time. An accurate control of roughness is essential to the performance and durability of virtually all engineering applications. At geological scales, roughness along tectonic faults is intimately linked to stick-slip behaviour as experienced during earthquakes. While numerous experiments on natural, fractured, and frictional sliding surfaces have shown that roughness has self-affine fractal properties, much less is known about the mechanisms controlling the origins and the evolution of roughness. Here, by performing long-timescale molecular dynamics simulations and tracking the roughness evolution in time, we reveal that the emergence of self-affine surfaces is governed by the interplay between the ductile and brittle mechanisms of adhesive wear in three-body contact, and is independent of the initial state.Surface roughness evolution with time is key for tribological applications. Here, the authors demonstrate by numerical simulations the evolution of sliding surfaces into self-affine morphologies during adhesive wear due to the formation of a third body trapped at the interface.

Volume 10
Pages None
DOI 10.1038/s41467-019-09127-8
Language English
Journal Nature Communications

Full Text