Nature Communications | 2019

Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis

 
 
 
 
 
 
 
 

Abstract


Enhancers are critical for developmental stage-specific gene expression, but their dynamic regulation in plants remains poorly understood. Here we compare genome-wide localization of H3K27ac, chromatin accessibility and transcriptomic changes during flower development in Arabidopsis. H3K27ac prevalently marks promoter-proximal regions, suggesting that H3K27ac is not a hallmark for enhancers in Arabidopsis. We provide computational and experimental evidence to confirm that distal DNase І hypersensitive sites are predictive of enhancers. The predicted enhancers are highly stage-specific across flower development, significantly associated with SNPs for flowering-related phenotypes, and conserved across crucifer species. Through the integration of genome-wide transcription factor (TF) binding datasets, we find that floral master regulators and stage-specific TFs are largely enriched at developmentally dynamic enhancers. Finally, we show that enhancer clusters and intronic enhancers significantly associate with stage-specific gene regulation by floral master TFs. Our study provides insights into the functional flexibility of enhancers during plant development, as well as hints to annotate plant enhancers.Enhancer elements can control spatial and temporal patterns of gene expression. Here the authors profile chromatin accessibility, histone modifications and gene expression during Arabidopsis flower development providing evidence for sets of distal enhancers acting in a highly stage-specific manner.

Volume 10
Pages None
DOI 10.1038/s41467-019-09513-2
Language English
Journal Nature Communications

Full Text