Nature Communications | 2019

Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Fast-charging and high-energy-density batteries pose significant safety concerns due to high rates of heat generation. Understanding how localized high temperatures affect the battery is critical but remains challenging, mainly due to the difficulty of probing battery internal temperature with high spatial resolution. Here we introduce a method to induce and sense localized high temperature inside a lithium battery using micro-Raman spectroscopy. We discover that temperature hotspots can induce significant lithium metal growth as compared to the surrounding lower temperature area due to the locally enhanced surface exchange current density. More importantly, localized high temperature can be one of the factors to cause battery internal shorting, which further elevates the temperature and increases the risk of thermal runaway. This work provides important insights on the effects of heterogeneous temperatures within batteries and aids the development of safer batteries, thermal management schemes, and diagnostic tools.Operation of lithium batteries at high, non-uniform temperatures can lead to safety issues, but the effects of localized high temperatures are difficult to probe. Here the authors use micro-Raman spectroscopy to show that local-temperature hotspots can induce lithium metal growth and trigger circuit shorting.

Volume 10
Pages None
DOI 10.1038/s41467-019-09924-1
Language English
Journal Nature Communications

Full Text