Nature Communications | 2019

Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD

 
 
 
 
 
 
 

Abstract


Only a minority of individuals experiencing trauma subsequently develop post-traumatic stress disorder (PTSD). However, whether differences in vulnerability to PTSD result from a predisposition or trauma exposure remains unclear. A major challenge in differentiating these possibilities is that clinical studies focus on individuals already exposed to trauma without pre-trauma conditions. Here, using the predator scent model of PTSD in rats and a longitudinal design, we measure pre-trauma brain-wide neural circuit functional connectivity, behavioral and corticosterone responses to trauma exposure, and post-trauma anxiety. Freezing during predator scent exposure correlates with functional connectivity in a set of neural circuits, indicating pre-existing circuit function can predispose animals to differential fearful responses to threats. Counterintuitively, rats with lower freezing show more avoidance of the predator scent, a prolonged corticosterone response, and higher anxiety long after exposure. This study provides a framework of pre-existing circuit function that determines threat responses, which might directly relate to PTSD-like behaviors.How do individual differences affect vulnerability to developing post-traumatic stress disorder (PTSD)? Here, using longitudinal testing in a rat model of PTSD, the authors show patterns of pre-trauma brain connectivity and behaviors that predict PTSD-like responses to trauma exposure.

Volume 10
Pages None
DOI 10.1038/s41467-019-09926-z
Language English
Journal Nature Communications

Full Text