Nature Communications | 2019

Correlating dynamic strain and photoluminescence of solid-state defects with stroboscopic x-ray diffraction microscopy

 
 
 
 
 

Abstract


Control of local lattice perturbations near optically-active defects in semiconductors is a key step to harnessing the potential of solid-state qubits for quantum information science and nanoscale sensing. We report the development of a stroboscopic scanning X-ray diffraction microscopy approach for real-space imaging of dynamic strain used in correlation with microscopic photoluminescence measurements. We demonstrate this technique in 4H-SiC, which hosts long-lifetime room temperature vacancy spin defects. Using nano-focused X-ray photon pulses synchronized to a surface acoustic wave launcher, we achieve an effective time resolution of ~100\u2009ps at a 25\u2009nm spatial resolution to map micro-radian dynamic lattice curvatures. The acoustically induced lattice distortions near an engineered scattering structure are correlated with enhanced photoluminescence responses of optically-active SiC quantum defects driven by local piezoelectric effects. These results demonstrate a unique route for directly imaging local strain in nanomechanical structures and quantifying dynamic structure-function relationships in materials under realistic operating conditions. Dynamic strain in silicon carbide can tune point defect properties and coherently control their electron spins. Here the authors fabricate Gaussian-shaped surface acoustic wave transducers, use stroboscopic x-ray imaging to measure lattice dynamics, and observe its effects on defect photoluminescence.

Volume 10
Pages None
DOI 10.1038/s41467-019-11365-9
Language English
Journal Nature Communications

Full Text