Nature Communications | 2019

Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Natural killer (NK) cells are critical to both innate and adaptive immunity. However, the development and heterogeneity of human NK cells are yet to be fully defined. Using single-cell RNA-sequencing technology, here we identify distinct NK populations in human bone marrow and blood, including one population expressing higher levels of immediate early genes indicative of a homeostatic activation. Functionally matured NK cells with high expression of CX3CR1, HAVCR2 (TIM-3), and ZEB2 represents terminally differentiated status with the unique transcriptional profile. Transcriptomic and pseudotime analyses identify a transitional population between CD56bright and CD56dim NK cells. Finally, a donor with GATA2T354M mutation exhibits reduced percentage of CD56bright NK cells with altered transcriptome and elevated cell death. These data expand our understanding of the heterogeneity and development of human NK cells. Natural killer (NK) cells are important innate immune cells with diverse functions. Here the authors use single-cell RNA-sequencing of purified human bone marrow and peripheral blood NK cells to define five populations of NK cells with distinct transcriptomic profile to further our understanding of NK development and heterogeneity.

Volume 10
Pages None
DOI 10.1038/s41467-019-11947-7
Language English
Journal Nature Communications

Full Text